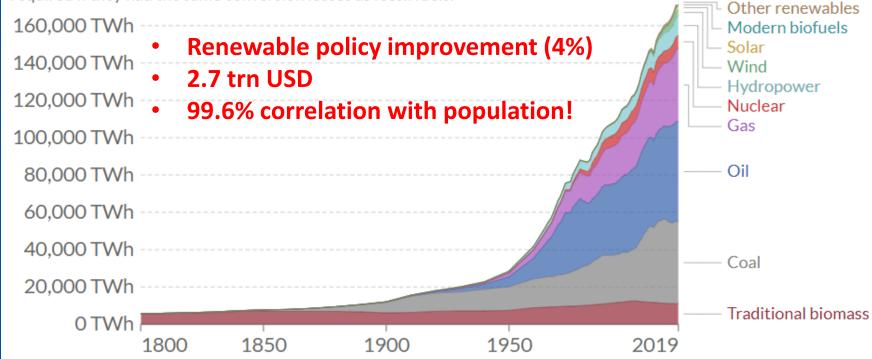


Energy for the future – making the right choice

JAN EMBLEMSVÅG PROFILGRUPPA 2023-06-16

The story

- The challenge
- Myths and facts
- New reactor designs
- What the future holds


This
Thorium ball
hold enough
energy to
supply you
for your
entire life!

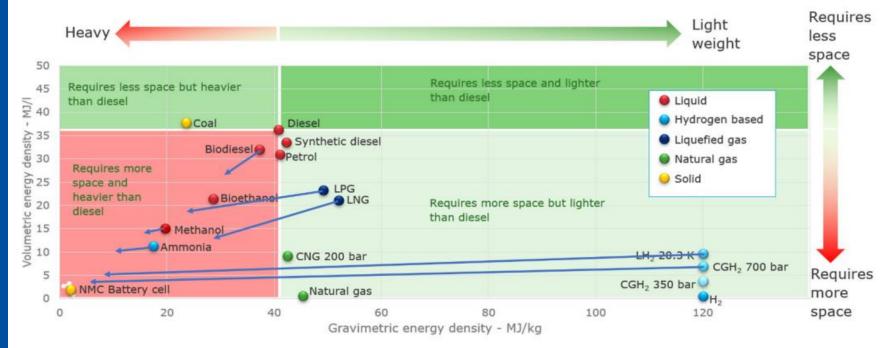
Based on today's average use per person in USA

Energy transition is at risk!

Primary energy is calculated based on the 'substitution method' which takes account of the inefficiencies in fossil fuel production by converting non-fossil energy into the energy inputs required if they had the same conversion losses as fossil fuels.

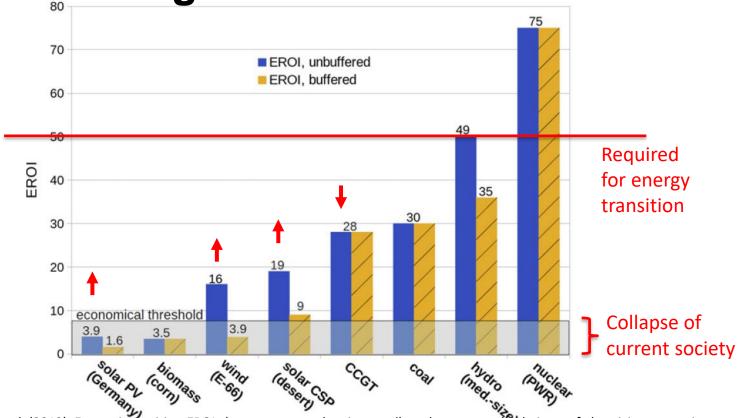
Source: Vaclav Smil (2017) & BP Statistical Review of World Energy

OurWorldInData.org/energy • CC BY


Electricity is easy – fuels are hard

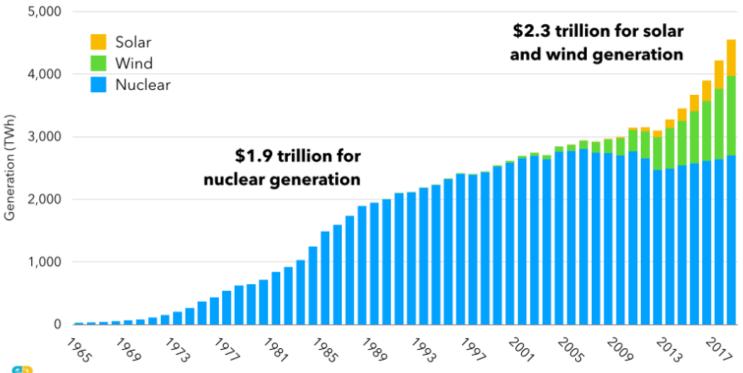
- 300 million tonnes HFO per year fable ping
 HFO has 11 MWh/tonne, by sustainable ping ammonia has only 5 MWh/tonne more and unsuste the volume is needed
 Green ammonia listicate 9 15 MWh/tonne
 To supply Unrealisticate with green fuels will require
- twice the total EU power production

Energy density is the key


If H2 is 1 meter on this scale, Uranium would be 32 km away from this venue and thorium 38 km away

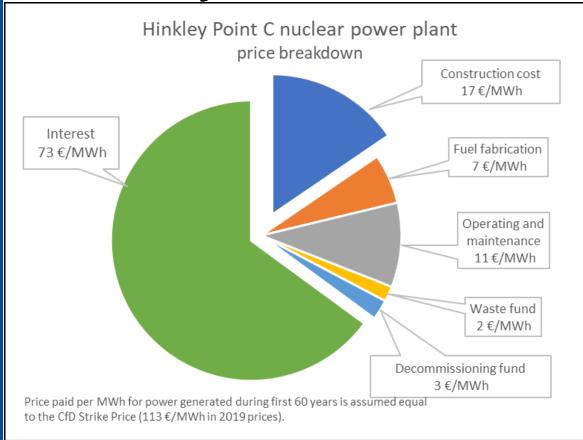
Source: DNV GL - Report No. 2019-0567, Rev. 3

Source: Weißbach et al. (2013). Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants. Energy, Vol 52, pp. 210-221.

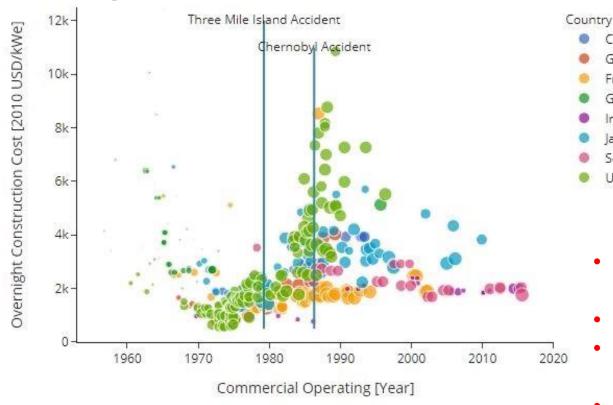


The key risks people think of

- 1. Costs the nuclear technology is very expensive
- 2. Waste the waste issue is huge and long-lasting
- **3.** Time we do not have time;
 - a) Too long building-time
 - b) Generation IV is too far ahead


Myth; Nuclear is costly

Hinkley Point C is instructive


- Expensive financing
- 100 bn Euros in profit!
- Prototype reactor
- Lack of experience

Source:

- National Audit Office (2017). Hinkley Point C
- Joris van Dorp; https://medium.com/generation-atomic/thehinkley-point-c-case-is-nuclear-energyexpensive-f89b1aa05c27

Regulations drive costs

- Partly science Gen III

 is better than Gen II
- Mostly politics

anada

Germany

France Great Britain

India Japan South Korea

USA

- Led to very slow improvement tempo
- Things may change...?

Detailed LCOE per reactor type

		Technology with 60 year life times	Size	Refurbishment and D&D costs			Fuel and waste	O&M	LCOE			
Cou	intry			3%	7%	10%	costs	costs	3%	5%	7%	10%
			MWe	USD/MWh		\$/MWh	\$/MWh	USD/MWh				
Belg	gium	Gen III	1 000-1 600	0.46	0.08	0.02	10.46	13.55	51.45	66.13	84.17	116.81
Finl	land	EPR	1 600	0.44	0.06	0.01	5.09	14.59	48.01	66.52	81.83	115.57
Fran	nce	EPR (2030)	1 630	0.40	0.06	0.01	9.33	13.33	49.98	64.63	82.64	115.21
Hun	igary	AES-2006	1 180	1.59	0.26	0.06	9.60	10.40	53.90	70.08	89.94	124.95
Japai	an	ALWR	1 152	0.42	0.07	0.02	14.15	27.43	62.63	73.80	87.57	112.50
Kore	ea	APR 1400	1 343	0.00	0.00	0.00	8.58	9.65	28.63	34.05	40.42	51.37
Slov	akia	VVER 440	535	4.65	1.50	0.83	12.43	10.17	53.90	66.68	83.95	116.48
UK		Multiple PWRs	3 300	0.54	0.09	0.02	11.31	20.93	64.38	80.88	100.75	135.72
US		ABWR	1 400	1.26	0.52	0.26	11.33	11.00	54.34	64.81	77.71	101.76
Non-OECD members												
Chi	China	AP 1000	1 250	0.23	0.04	0.01	9.33	7.32	30.77	34.57	47.61	64.40
Chi		CPR 1000	1 080	0.16	0.03	0.01	9.33	6.50	25.59	33.05	37.23	48.83

Source: The Full Costs of Electricity. Provision Nuclear Energy Agency International Workshop 2016, OECD, Paris

APR 1400 offered to Turkey

Kepco submitted February 1st 2023 a preliminary proposal to build 4 APR 1400 (5,6 GW / 45 TWh per year) worth about \$30bn (€27bn)

South Korea would offer the same APR1400 technology used for four units at the Barakah nuclear power station in the United Arab Emirates.

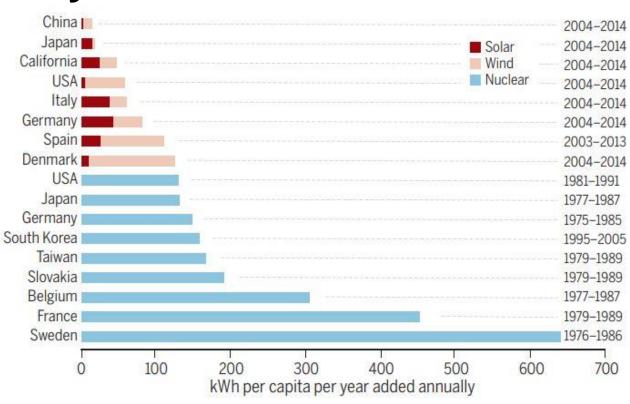
Myth; Nuclear generates a lot of waste

- 99.5% of the radiation is found in 10.2% of the material
- After 40 years, only 1 permille of radioactivity is left
- In 2018, there was 2,355 m³ material from which Switzerland had produced 2,667 TWh by the end of 2018
- Gen IV would have given 100,000 TWh

Decommissioning is NOT difficult

Oyster Creek 650 MW

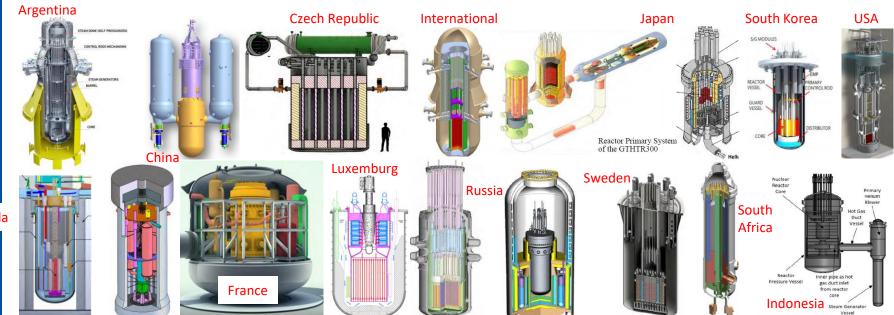
- 8 years by Holtec
- 2300 tonnes
- 884 MUSD
- Back to nature by 2080


Pilgrim 677 MW

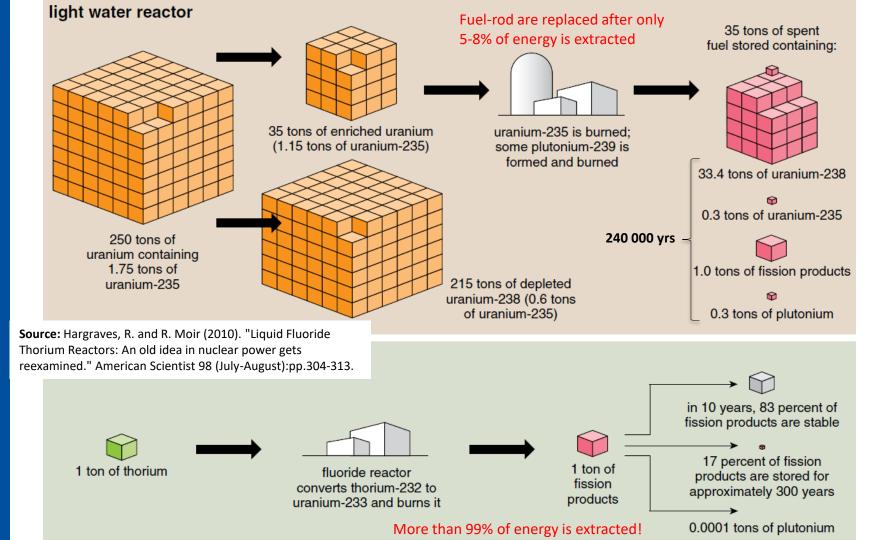
- 8 years by Holtec
- 2100 tonnes
- 1130 MUSD
- Back to nature by 2080

Myth: Nuclear takes too much time

Average annual increase of carbon-free electricity per capita during decade of peak scale-up. Energy data from (6) except California renewables data from (7). Population data from (8). See supplementary materials.


Source: Cao J. et al. (2016). China-U.S. cooperation to advance nuclear power. Science, 353 (6299). DOI: 10.1126/science.aaf7131.

Nuclear innovations are many


Not in scale

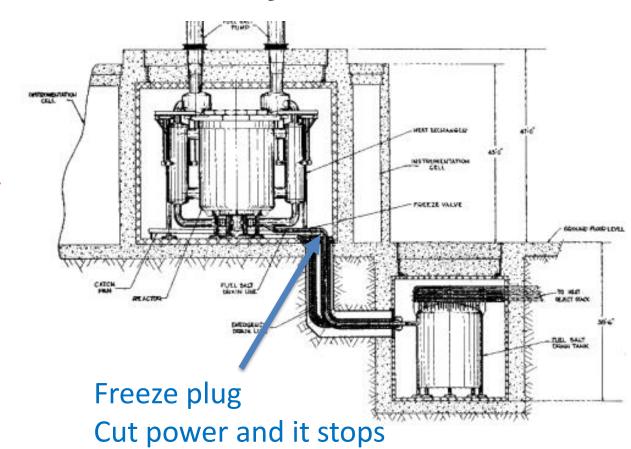
67 different Small Modular Reactors (SMR) under development in 2020... here are 17;

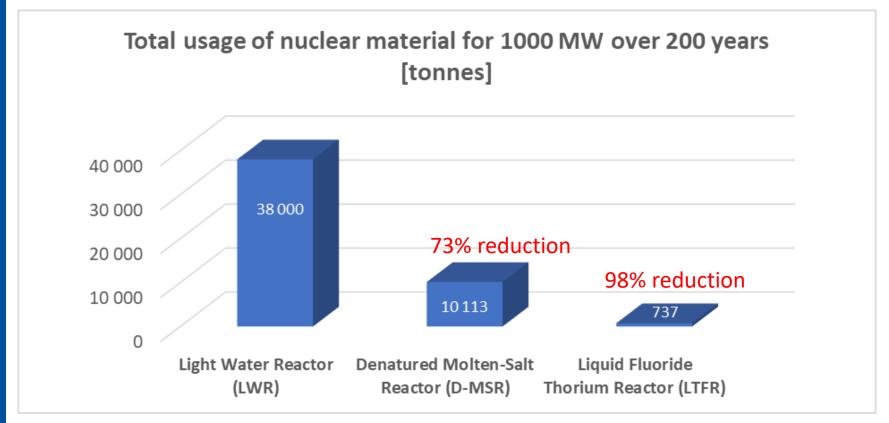
Canada

Introducing the Molten Salt Reactor (MSR)

Source: Haubenreich, P. N. and J. R. Engle (1970). "Experience with the Molten-Salt Reactor Experiment." Nuclear Applications and Technology 8(2):pp.118-136.

Support: https://energyfromthorium.com/pdf/


- The MSR is a liquid, chemical device and not a mechanical device based on fuel rods as in traditional nuclear reactors
- An MSR operated perfectly between 1965 and 1969 at 7 MWth
- 80% uptime!
- MSR is ideal due to scalability, safety, simplicity and costs
- The breeder versions can become almost 100 times more effective than current nuclear plants


All MSRs are walk-away safe!

- Inherently stable (negative reactivity)
- Fuel is already melted cannot boil
- 3. Atmospheric pressure prevents explosions

Dramatic reduction of waste

MSR is cheaper than coal

(before CO₂ taxes)

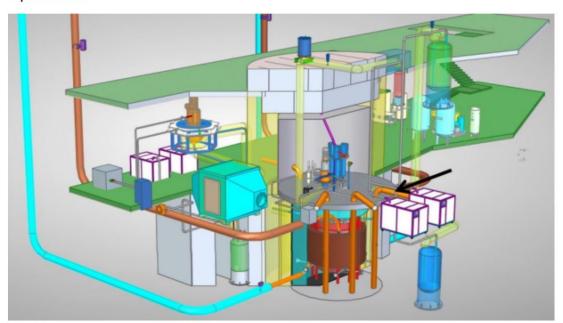
Item		1978\$		2000\$			
Direct costs, M\$	MSR	PWR	Coal	MSR	PWR	Coal	
	Cost/kWh, ¢/kWh						
Capital	0.83b	0.85b	0.65b	2.01b	2.07b	1.58b	
O&M	0.24c	0.47d	0.33d	0.58c	1.13d	0.80d	
Fuel	0.46c	0.31e	0.71f	1.11c	0.74e	1.72f	
Waste disposal	0.04g	0.04g	0.04d	0.10g	0.10g	0.09d	
Decom	0.02c	0.03d		0.04c	0.07d		
Total	1.58	1.69	1.73	3.84	4.11	4.19	

Ca 30 øre/kWh

Source: Moir, R.W. (2002). "The cost of electricity from Molten Salt Reactors (MSR)." Nuclear Technology 138(1):93-95.

The pebble-bed reactor is here...

The demonstration high-temperature gas-cooled reactor pebble-bed module (HTR-PM) at the Shidaowan site in Shandong Province of China was connected to the grid in December 2021. Courtesy: China Nuclear Energy Association


The thorium-based MSR is also here

Chinese molten-salt reactor cleared for start up

09 August 2022

The Shanghai Institute of Applied Physics (SINAP) - part of the Chinese Academy of Sciences (CAS) - has been given approval by the Ministry of Ecology and Environment to commission an experimental thorium-powered molten-salt reactor, construction of which started in Wuwei city, Gansu province, in September 2018.

- 500 MUSD project
- Commercial versions ready before 2030
- 370 MW

CLEAN ENERGY

Why Silicon Valley is so hot on nuclear energy and what it means for the industry

PUBLISHED FRI, DEC 2 2022 7:00 AM EST UPDATED FRI, DEC 2 2022 4:39 PM EST

Catherine Clifford

@CATCLIFFORD @IN/CATCLIFFORD/

KEY POINTS

- From 2015 to 2021, the pace at which venture capitalists put money into private nuclear companies eclipsed the entire VC space and even the fast-growing climate tech space.
- That new money coming from new places is leading to smaller and more specific kinds of nuclear reactors.
- But some say all of this activity is overwrought and a sign that investors are forgetting the industry's long history of taking too long and being too expensive to be meaningful.

BUT; Norway also needs to act

Question and Answer

